Existence of SBIBD(4k2, 2k2±k, k2±k) and Hadamard matrices with maximal excess
نویسنده
چکیده
It is shown that SBIED(4k 2 , 2Jc 2 ± k, P ± k) and Hadamard matrices with maximal excess exist for qs,q {q:q 1 (mod 4) is a prime power}, + 1, g the length of a Golay sequence}. There a proper n dimensional Hadamard matrix of order (4k2)n. Regular symmetric Hadamard matrices with constant diagonal are obtained for orders 4k2 whenever complete regular 4-sets of regular matrices of order k 2 exist.
منابع مشابه
Some new results of regular Hadamard matrices and SBIBD II
In this paper we prove that there exist 4—{k2; 1/2k(k—1); k(k—2)} SDS, regular Hadamard matrices of order 4k2, and SBIBD(4k2, 2k2 + k, k2 + k) for k = 47, 71, 151, 167, 199, 263, 359, 439, 599, 631, 727, 919, 5q1, 5q2N, 7q3, where ql, q2 and q3 are prime power such that ql ≡ 1(mod 4), q2 ≡ 5(mod 8) and q3 ≡ 3(mod 8), N = 2a3bt2, a, b = 0 or 1, t ≠ 0 is an arbitrary integer. We find new SBIBD(4k...
متن کاملA construction of Hadamard matrices from BIBD (2k2-2k+1, k, 1)
It is shown that the existence of a BIB design with parameters v = 2k − 2k+1, b = 2v, r = 2k, k, λ = 1 implies the existence of Hadamard matrices of orders 4v and 8vt, where t is an integer for which an orthogonal design of order 4t and type (t, t, t, t) exists.
متن کاملRegular Hadamard matrix, maximum excess and SBIBD
When k = q1, q2, q1q2, q1q4, q2q3N , q3q4N , where q1, q2 and q3 are prime powers, and where q1 ≡ 1 (mod 4), q2 ≡ 3 (mod 8), q3 ≡ 5 (mod 8), q4 = 7 or 23, N = 23t, a, b = 0 or 1, t = 0 is an arbitrary integer, we prove that there exist regular Hadamard matrices of order 4k, and also there exist SBIBD(4k, 2k + k, k + k). We find new SBIBD(4k, 2k + k, k + k) for 233 values of k. ∗ The second auth...
متن کاملHadamard matrices of order =8 (mod 16) with maximal excess
Kounias and Farmakis, in 'On the excess of Hadamard matrices', Discrete Math. 68 (1988) 59-69, showed that the maximal excess (or sum of the elements) of an Hadamard matrix of order h, o(h) for h = 4m(m -1) is given by o(4m(m 1))≤4(m 1)2(2m + 1). Kharaghani in 'An infinite class of Hadamard matrices of maximal excess' (to appear) showed this maximal excess can be attained if m is the order of a...
متن کاملThe excess of complex Hadamard matrices
A complex Hadamard matrix, C, of order n has elements 1, -1, i, i and satisfies CC* = nIn where C* denotes the conjugate transpose of C. Let C = [cij] be a complex Hadamard matrix of order n. S(C) = ∑ cij is called the sum of C. 0(C) = │S(C)│ is called the excess of C. We study the excess of complex Hadamard matrices. As an application many real Hadamard matrices of large and maximal excess are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 4 شماره
صفحات -
تاریخ انتشار 1991